This page contains information supplementary to (Garcia, Reznik, and Koiller 2020). We consider Poncelet 3-periodic families interscribed in a pair of ellipses \(\mathcal{E}\) and \(\mathcal{E}_c\) with semiaxes \(a,b\) and \(a_c,b_c\), respectively. The Cayley condition for the pair to admit a Poncelet 3-periodic family is (Georgiev and Nedyalkova 2012):

\[\frac{a_c}a+\frac{b_c}b=1\]

Below we report on triangle centers on (Kimberling 2019) whose loci over Poncelet 3-periodics is an ellipse. These are typically first detected numerically and then proven rigorously, e.g., (Romaskevich 2014),(Tabachnikov and Tsukerman 2014),(Schwartz and Tabachnikov 2016),(Garcia 2019),(Fierobe 2021).

Here we focus on first 200 triangle centers on (Kimberling 2019). We consider 3-periodic families in the confocal (elliptic billiard) and homothetic pair. Appendix A tabulates fit errors for loci in the confocal family, which should be negligible when a given locus is an ellipse.

The family of 3-Periodics in some classic ellipse pairs can be viewed here. All loci herein can be visualized with our interactive app; illustrations and documentation are available on this webpage.

I. Confocal Family: Semi-axes of elliptic loci

Preliminaries

The following explicit expressions were given for the semi-axes \(a_c,b_c\) of the \(N=3\) confocal caustic (Garcia 2019):

\[a_c=\frac{a\left(\delta-b^{2}\right)}{c^2},\;\;\;b_c=\frac{b\left(a^{2}-\delta\right)}{c^2}\] with \(\delta=\sqrt{a^4-a^2b^2+b^4}\) and \(c^2=a^2-b^2\).

Below we provide explicit expressions for the semi-axes \(a_i,b_i\) of loci, i.e., let the locus of center \(X_i\) be described as:

\[\frac{x^2}{a_{i}^2}+\frac{y^2}{b_{i}^2}=1\]

A gallery of loci for all of \(X_1\) thru \(X_{100}\) appears here.

X(1) and excenters, see it

\[a_1=\frac{\delta-b^{2}}a,\;\;\;b_1=\frac{a^{2}-\delta}b\]

The locus of the excenters is an ellipse with axes (Garcia 2019):

\[a_e=\frac{b^{2}+\delta}a,\;\;\; b_e=\frac{a^{2}+\delta}b\]

Notice it is similar to the \(X_1\) locus, i.e., \(a_1/b_1=b_e/a_e\).

Note: The ellipticity of \(X_1\) for confocals was proven in (Romaskevich 2014) and (Garcia 2019).

X(2) (similar to billiard), see it

\[\left(a_2,b_2\right)=k_2\left(a,b\right),\;\textrm{where}\; k_2=\frac{2\delta -a^{2}-b^{2}}{3c^2}\]

Note: The ellipticity of \(X_2\) for any Poncelet family was proven in (Schwartz and Tabachnikov 2016), (Garcia 2019).

X(3) (similar to rotated caustic), see it

\[ a_3=\frac{a^{2}-\delta}{2a},\;\;\; b_3=\frac{\delta-b^{2}}{2b} \]

Additionally, when \(a/b= \frac{\sqrt{2\sqrt{33}+2}}{2} \;{\simeq}\;1.836\), \(b_3=b\), i.e., the top and bottom vertices of the locus of \(X_3\) coincide with the billiard’s.

Note: The ellipticity of \(X_3\) for confocals was proven in (Garcia 2019) and (Fierobe 2021). In (Tabachnikov and Tsukerman 2014), one consideres the ``circumcenter-of-mass’’ which generalizes this result for any \(N{\geq}3\) Poncelet family.

X(4) (similar to rotated billiard), see it

\[ \left(a_4,b_4\right)=\left(\frac{k_4}a,\frac{k_4}b\right),\; k_4=\frac{ (a^{2}+b^{2})\delta-2\,a^{2}b^{2} }{c^2} \]

Additionally:

  • When \(a/b=a_4=\sqrt{2\,\sqrt {2}-1}\;{\simeq}\;1.352\), \(b_4=b\), i.e., the top and bottom vertices of the locus of \(X_4\) coincide with the billiard’s.
  • Let \(a_4^*\) be the positive root of \({x}^{6}+{x}^{4}-4\,{x}^{3}-{x}^{2}-1=0\), i.e., \(a_4^{*}={\simeq}\;1.51\). When \(a/b=a_4^{*}\), \(a_4=b\) and \(b_4=a\), i.e., the locus of \(X_4\) is identical to a rotated copy of billiard.

X(5), see it

\[ a_5=\frac{- w'_5(a,b)+ w''_5(a,b) \delta}{ w_5(a,b)},\;\;\;b_5=\frac{ w'_5(b,a)-{w''_5(b,a) \delta}}{w_5(b,a)} \]

\[ w'_5(u,v)=u^2(u^2+3v^2),\;\;\;w''_5(u,v)=3u^2+ v^2,\;\;\;w_5(u,v)=4u(u^2-v^2). \]

X(7) (similar to billiard), see it

\[ \left(a_7,b_7\right)=k_7\left(a,b\right),\;\; k_7=\frac{2\delta - a^{2}-b^{2}}{c^2} \]

X(8), see it

\[ a_{8}= {\frac{ (b^2-\delta)^2 }{a c^2 }},\;\;\; b_{8}={\frac{ (a^{2} -\delta )^2 }{b c^2 }} \]

X(10) (similar to rotated billiard), see it

\[ \left(a_{10},b_{10}\right)=\left(\frac{k_{10}}a,\frac{k_{10}}b\right),\;\; k_{10}=\frac{ \left( a^{2}+b^{2} \right)\delta-a^{4}-b^{4}}{2 c^2} \]

X(11) (identical to caustic), see it

\[a_{11}=a_c,\;\;\;b_{11}=b_c\]

X(12), see it

\[a_{12}=\frac{ - w'_{12} (a,b)+ w''_{12}(a,b) \delta}{ w_{12} (a,b)},\;\;\;b_{12}=\frac{ w'_{12}(b,a)-w''_{12}(b,a)\delta}{ w_{12}(b,a)}\]

\[\begin{align*} w'_{12}(u,v)=& v^2(15\,{u}^{6}+12\,{v}^{2}{u}^{4}+3\,{u}^{2}{v}^{4}+2\,{v}^{6})\\ w''_{12}(u,v)= & 7\,{u}^{6}+12\,{v}^{2}{u}^{4}+11\,{u}^{2}{v}^{4}+2\,{v}^{6} \\ w_{12}(u,v)=& u( 7\,{u}^{6}+11\,{v}^{2}{u}^{4}-11\,{u}^{2}{v}^{4}-7\,{v}^{6}). \end{align*}\]

X(20), see it

\[a_{20}= {\frac{a^{2} \left(3b^2- a^{2} \right) -2b^2\,\delta }{ ac^2}}, \;\;\; b_{20}= {\frac{b^{2} \left(b^{2} -3a^2\right) +2a^2\,\delta}{b c^2 }}\]

X(21), see it

\[ a_{21}=\frac{-w'_{21}(a,b)+ w''_{21}(a,b) \delta}{ w_{21}(a,b)},\;\;\;b_{21}=\frac{ w'_{21}(b,a)- \, w''_{21}(b,a)\delta}{ w_{21}(b,a)}\\ \]

\[w'_{21}(u,v)={u}^{4}+{u}^{2}{v}^{2}+ \,{v}^{4},\;\;w''_{21}(u,v)= 2( {u}^{2}+{v}^{2}),\;\;w_{21}(u,v)=u\left( 3\,{u}^{2}+5\,{v}^{2} \right)\]

X(35), see it

\[\begin{align*} a_{35}=&\frac{-w'_{35}(a,b)+w''_{35}(a,b) \delta}{w_{35}(a,b)},\;\;\;b_{35}=\frac{-w'_{35}(b,a)+w''_{35}(b,a)\delta}{w_{35}(b,a)} \\ w'_{35}(u,v)=&v^2( 11\,{u}^{4}+4\,{u}^{2}{v}^{2}+{v}^{4} ),\;\;\;w''_{35}(u,v)=\left( 7\,{u}^{2}+{v}^{2} \right) \left( {u}^{2}+{v}^{2}\right)\\ w_{35}(u,v)=& u(7\,{u}^{4}+18\,{u}^{2}{v}^{2}+7\,{v}^{4} ) \end{align*} \]

X(36), see it

\[ a_{36}=\frac{w'_{36}(a,b)+ w''_{36}(a,b)\delta }{w_{36}(a,b)},\;\;\;b_{36}=\frac{ -w'_{36}(b,a) -w''_{36}(b,a)\delta}{w(b,a)}\]

\[w'_{36}(u,v)= {v}^{2} \left( {u}^{2}+{v}^{2} \right),\;\;\;w''_{36}(u,v)= 3\,{u}^{2}-{v}^{2},\;\;\; w_{36}(u,v)=3u \left(u^2-v^2\right)\]

X(40) (similar to rotated billiard), see it

\[a_{40}=\frac{c^2}a,\;\;\;b_{40}=\frac{c^2}b\]

Additionally:

  • When \(a/b= \sqrt{2}\), \(b_{40}=b\), i.e., the top and bottom vertices of the \(X_{40}\) locus coincides with the billiard’s.
  • When \(a/b=(1+\sqrt{5})/2=\phi\;{\simeq}\;1.618\), \(b_{40}=a\) and \(a_{40}=b\), i.e., the \(X_{40}\) locus is identical to a rotated copy of billiard.

X(46), see it

\[a_{46}=\frac{w'_{46}(a,b)+w''_{46}(a,b) \delta}{ w_{46}(a,b) },\;\;\;b_{46}=\frac{-w'_{46}(b,a) - w''_{46}(b,a)\delta}{ w_{46}(b,a) }\]

\[\begin{align*} w'_{46}(u,v)=& v^2(3\,{u}^{2}-{v}^{2} )(u^2-v^2),\;\;\;w''_{46}(u,v)= (5\,{u}^{2}+{v}^{2})(u^2-v^2) \\ w_{46}(u,v)=& v(5\,{u}^{4}-6\,{u}^{2}{v}^{2}+5\,{v}^{4} ) \end{align*}\]

X(55) (similar to caustic), see it

\[a_{55}= {\frac{a\left(\delta-b^{2} \right)}{a^{2}+b^{2}}},\;\; b_{55} = { \frac{b \left( a^{2}-\delta \right)}{a^{2}+b^{2}}}\]

X(56), see it

\[a_{56}= \frac{-w'_{56}(a,b) + w''_{56}(a,b) \delta}{ w_{56}(a,b) },\;\;\; b_{56}= \frac{ w'_{56}(b,a) - w''_{56}(b,a) \delta}{ w_{56}(b,a) } \]

\[\begin{align*} w'_{56}(u,v)=&v^2( {u}^{4}-{u}^{2}{v}^{2}+2\,{v}^{4}),\;\;\;w''_{56}(u,v)= 5\,{u}^{4}-5\,{u}^{2}{v}^{2}+2\,{v}^{4} \\ w_{56}(u,v)=&u(5\,{u}^{4}-6\,{u}^{2}{v}^{2}+5\,{v}^{4} ) \end{align*} \]

X(57) (similar to billiard), see it

\[ \left(a_{57},b_{57}\right)=k_{57}\left(a,b\right),\;\; k_{57}=\frac{c^2}{\delta} %a_{57}=\frac{a (a^2- b^2)}{ \delta}, \;\;\; %b_{57}=\frac{b (a^2- b^2)}{ \delta}\]

X(63) (similar to billiard), see it

\[\left(a_{63},b_{63}\right)=k_{63}\left(a,b\right),\;\; k_{63}=\frac{c^2}{a^2+b^2} %a_{63}={\frac{a \left( a^{2}-a^{2} \right) }{a^{2}+a^{2}}},\;\;\; %b_{63}= {\frac{b \left( a^{2}-a^{2} \right) }{a^{2}+a^{2}}}\]

X(65), see it

\[\begin{align*} a_{65}=& \frac{w'_{65}(a,b) + w''_{65}(a,b) \delta}{ w_{65}(a,b)},\;\;\; b_{65}=\frac{-w'_{65}(b,a)- w''_{65}(b,a) \delta}{ w_{65}(b,a)} \end{align*}\]

\[\begin{align*} w'_{65}(u,v)=& {u}^{4}{v}^{2}+{u}^{2}{v}^{4}+2\,{v}^{6},\;\;\; w''_{65}(u,v)={u}^{4}-3\,{u}^{2}{v}^{2}-2\,{v}^{4}\\ w_{65}(u,v)=&u\left( {u}^{2}-{v}^{2} \right) ^{2} \end{align*}\]

X(72), see it

\[\begin{align*} a_{72}=& \frac{w'_{72}(a,b) - w''_{72}(a,b) \delta }{w_{72}(a,b)},\;\;\; b_{72}= \frac{-w'_{72}(b,a) + w''_{72}(b,a) \delta}{w_{72}(b,a) } \end{align*}\]

\[w'_{72}(u,v)= {u}^{6}+2\,{u}^{2}{v}^{4}+{v}^{6},\;\; w''_{72}(u,v)= (3\,{u}^{2}+{v}^{2}){v}^{2},\;\; w_{72}(u,v)= u\left(u^2-v^2 \right)^{2}\]

X(78), see it

\[a_{78}= \frac{w'_{78}(a,b) -w''_{78}(a,b) \delta }{w_{78}(a,b) },\;\;\; b_{78}= \frac{-w'_{78}(b,a)+w''_{78}(b,a) \delta}{w_{78}(b,a)}\]

\[\begin{align*} w'_{78}(u,v)=&5\,{u}^{6}-4\,{u}^{4}{v}^{2}+{u}^{2}{v}^{4}+2\,{v}^{6},\;\;\;w''_{78}(u,v)= 2\,{v}^{2} \left( {u}^{2}+{v}^{2}\right)\\ w_{78}(u,v)=&u \left( 5\,{u}^{4}-6\,{v}^{2}{u}^{2}+5\,{v}^{4} \right)\ \end{align*}\]

X(79), see it

\[a_{79}= \frac{-w'_{79}(a,b) + w''_{79}(a,b) \delta }{w_{79}(a,b) }, \;\;\; b_{79}= \frac{ w'_{79}(b,a)- w''_{79}(b,a) \delta }{ w_{79}(b,a) }\]

\[\begin{align*} w'_{79}(u,v)=&{v}^{2} 11\,{u}^{4}+4\,{v}^{2}{u}^{2}+{v}^{4},\;\;\;w_{79}''(u,v)= \left( 3\,{u}^{4}+12\,{u}^{2}{v}^{2}+{v}^{4} \right) \\ w_{79}(u,v)=&u \left( u^2-v^2 \right) \left( 3\,{u}^{2}+5\,{v}^{2} \right) \end{align*}\]

X(80), see it

\[a_{80}={\frac{ \left( \delta-b^{2} \right) \left( a^{2}+b^{2} \right)}{a c^2}},\;\;\; b_{80}={\frac{ \left( a^{2}-\delta \right) \left( a^{2}+b^{2} \right)}{b c^2}}\]

X(84) (similar to rotated caustic), see it

\[a_{84}=\frac{\left(b^{2}+\delta \right) c^2}{a^{3}},\;\;\; b_{84}=\frac{\left( a^{2}+\delta \right) c^2}{b^{3}}\]

X(88) (identical to billiard), see it

\[a_{88}=a,\;\;\;b_{88}=b\]

X(90), see it

\[a_{90}= \frac{ w'_{90}(a,b) + w''_{90}(a,b)\delta }{w_{90}(a,b)},\;\;\; b_{90}= \frac{w'_{90}(b,a)+w''_{90}(b,a) \delta }{ w_{90}(b,a)}\]

\[\begin{align*} w'_{90}(u,v)=&v^2(3u^2-v^2) (u^2-v^2),\;\;\; w''_{90}(u,v)=u^4-v^4 \\ w_{90}(u,v)=& u \left( {u}^{4}+2\,{u}^{2}{v}^{2}-7\,{v}^{4} \right) \end{align*}\]

X(100) (identical to billiard), see it

\[a_{100}=a,\;\;\;b_{100}=b\]

Note: From \(X_{101}\) thru \(X_{200}\), also elliptic are the loci of \(X_k\) \(k\)in 104, 119, 140, 142, 144, 145, 149, 153, 162, 165, 190, 191, 200.

II. Homothetic Family: Locus Semi-Axes

Consider 3-periodics in an ellipse pair such that \(a_c=a/2\) and \(b_c=b/2\). From \(X_{1}\) to \(X_{200}\), the loci of 27 (resp. 4) triangle centers are ellipses (resp. circles). Their axes are given by:

X(3)

\[ a_3= \frac{c^2}{4a},\;\;\;b_3=\frac{c^2}{4b} \]

X(4)

\[ a_4= \frac{c^2}{2a},\;\;\;b_4=\frac{c^2}{2b} \]

X(5)

\[ a_5= \frac{c^2}{8a},\;\;\;b_5=\frac{c^2}{8b} \]

X(6)

\[ a_6= \frac{ac^2}{2(a^2+b^2)},\;\;\;b_6=\frac{bc^2}{2(a^2+b^2)} \]

X(13), X(14), X(15), X(16): all circles! see it and video

\[ r_{13}= \frac{a-b}{2},\;\;\;r_{14}= \frac{a+b}{2},\;\;\;r_{15}= \frac{(a-b)^2}{2(a+b)},\;\;\;r_{16}= \frac{(a+b)^2}{2(a-b)} \]

X(17)

\[ a_{17}=\frac{c^2}{2(a+3b)},\;\;\;b_{17}= \frac{c^2}{2(3a+b)} \]

X(18)

\[ a_{18}=\frac{c^2}{2(a-3b)},\;\;\;b_{18}= \frac{c^2}{2(3a-b)} \]

X(20)

\[ a_{20}= \frac{c^2}a,\;\;\;b_{20}=\frac{c^2}b \]

X(32)

\[ a_{32}= \frac {a \left( c^2 \right) \left( 3\,a^{2}+5\,b^{2} \right)}{2(3\,a^{4}+2\,a^{2}b^{2}+3\,b^{4})},\;\;\; b_{32}= \frac {b \left( c^2 \right) \left( 3\,a^{2}+5\,b^{2} \right)}{2(3\,a^{4}+2\,a^{2}b^{2}+3\,b^{4})} \]

X(39)

\[ a_{39}=\frac { \left( a^{2}-b^{2} \right) a}{2( a^{2}+3\,b^{2})},\;\;\; b_{39}=\frac{ \left( a^{2}-b^{2} \right) b}{2(3 \,a^{2}+\,b^{2})}\]

X(61)

\[a_{61}= \frac {\left( c^2\right)\left( 3\,a-b \right)}{2( 3a^{2}+2\,ab+3\,b^{2})},\;\;\; b_{61}= \frac { \left( c^2 \right)\left( a-3\,b \right)}{2(3\,a^{2}+2\,ab+3\,b^{2})}\]

X(62)

\[a_{62}=\,{\frac{\left( c^2\right)\left(3\,a+b\right)}{2(3\,a^{2}-2\,ab+3\,b^{2})}},\;\;\; b_{62}={\frac{ \left( c^2 \right) \left( a+3b\right) }{2(3\,a^{2}-2\,ab+3\,b^{2})}}\]

X(69)

\[a_{69}={\frac { \left( c^2 \right)a}{a^{2}+b^{2}}},\;\;\; b_{69}=\frac{\left( c^2 \right)b}{a^{2}+b^{2}} \]

X(76)

\[ a_{76}=\frac{\left( c^2 \right)a}{a^{2}+3b^{2}},\;\;\; b_{76}= \frac{ \left( c^2 \right)b}{3a^{2}+b^{2}} \]

X(83)

\[a_{83} = \frac { \left( c^2 \right) a}{5a^{2}+3b^{2}},\;\;\; b_{83} = \frac{ \left( c^2 \right) b}{3a^{2}+5b^{2}} \]

X(98)

\[ a_{98}= \frac{a^2+b^2}{2a},\;\;\;b_{98}= \frac{a^2+b^2}{2b} \]

X(99)

\[ a_{99}=a,\;\;\;b_{99}=b \]

X(114)

\[ a_{114}= \frac{a^2+b^2}{4a},\;\;\;b_{114}= \frac{a^2+b^2}{4b} \]

X(115)

\[ a_{115}= \frac{a }{2},\;\;\;b_{115}= \frac{b}{2} \]

X(140)

\[ a_{140}= \frac{c^2}{16a},\;\;\;b_{140}= \frac{c^2}{16b} \]

X(141)

\[ a_{141}=\frac{c^2 a}{4(a^2+b^2)}\;\;\;b_{141}= \frac{c^2 b}{4(a^2+b^2)} \]

X(147)

\[ a_{147}=\frac{a^2+b^2}a,\;\;\;b_{147}= \frac{a^2+b^2}b \]

X(148)

\[ a_{148}=2a,\;\;\;b_{148}=2b \]

X(182)

\[ a_{182}=\frac{c^4}{8a(a^2+b^2)},\;\;\; b_{182}= \frac{c^4}{8b(a^2+b^2)} \]

X(187)

\[ a_{187}= \frac{a(a^2+3b^2)}{2c^2},\;\;\; b_{187}= \frac{b(3a^2+b^2)}{2c^2} \]

X(190)

\[ a_{190}= a,\;\;\;b_{190}=b \]

X(193)

\[ a_{193}=\frac{2c^2 a}{a^2+b^2},\;\;\; b_{193}=\frac{2c^2 b}{a^2+b^2} \]

X(194)

\[ a_{194}=\frac{2c^2 a}{a^2+3b^2},\;\;\; b_{194}=\frac{2c^2 b}{3a^2+b^2} \]

Appendix A: Confocal Family: elliptic fit error

Let the least-squares fit error be defined by:

\[\text{err}^2(a_i,b_i)= \sum_{k=1}^M{\left[\left(\frac{x_k}{a_i}\right)^2+\left(\frac{y_k}{b_i}\right)^2-1\right]^2}\]

The 29 centers with elliptic loci amongst the first 100 in Kimberling’s Encyclopedia (Kimberling 2019). These are listed in ascending order of (negligible) fit error, \(a/b=1.5\), \(M=1500\). Columns \(\hat{a},\hat{b}\) show the estimated semi-axes’ lengths. Notice for \(X_{100}\) and \(X_{88}\) these are identical to \(a,b\), since these points lie on the EB.

\[ \begin{array}{|c|c|c|c|c|} \hline \text{rank} & X_i & \hat{a} & \hat{b} & \sum{err{}^2} \\ \hline 1 & 100 & 1.50 & 1.00 & 5.9\times 10^{-14} \\ 2 & 80 & 1.65 & 0.77 & 8.1\times 10^{-14} \\ 3 & 46 & 1.47 & 1.18 & 8.3\times 10^{-14} \\ 4 & 36 & 2.57 & 2.34 & 1.\times 10^{-13} \\ 5 & 88 & 1.50 & 1.00 & 1.\times 10^{-13} \\ 6 & 56 & 1.05 & 0.74 & 1.1\times 10^{-13} \\ 7 & 20 & 1.18 & 2.43 & 1.1\times 10^{-13} \\ 8 & 72 & 0.75 & 0.35 & 1.1\times 10^{-13} \\ 9 & 63 & 0.58 & 0.38 & 1.2\times 10^{-13} \\ 10 & 40 & 0.83 & 1.25 & 1.3\times 10^{-13} \\ 11 & 78 & 1.12 & 0.28 & 1.3\times 10^{-13} \\ 12 & 57 & 0.96 & 0.64 & 1.4\times 10^{-13} \\ 13 & 79 & 0.85 & 0.68 & 1.4\times 10^{-13} \\ 14 & 4 & 0.98 & 1.48 & 1.4\times 10^{-13} \\ 15 & 65 & 0.90 & 0.58 & 1.4\times 10^{-13} \\ 16 & 7 & 0.79 & 0.52 & 1.5\times 10^{-13} \\ 17 & 11 & 1.14 & 0.24 & 1.7\times 10^{-13} \\ 18 & 5 & 0.44 & 0.50 & 1.7\times 10^{-13} \\ 19 & 84 & 1.09 & 5.25 & 1.8\times 10^{-13} \\ 20 & 12 & 0.55 & 0.38 & 1.8\times 10^{-13} \\ 21 & 1 & 0.64 & 0.30 & 1.8\times 10^{-13} \\ 22 & 2 & 0.26 & 0.17 & 2.3\times 10^{-13} \\ 23 & 3 & 0.10 & 0.48 & 2.5\times 10^{-13} \\ 24 & 55 & 0.44 & 0.09 & 2.9\times 10^{-13} \\ 25 & 8 & 0.48 & 0.07 & 3.3\times 10^{-13} \\ 26 & 10 & 0.08 & 0.11 & 3.6\times 10^{-13} \\ 27 & 90 & 3.93 & 0.34 & 4.\times 10^{-13} \\ 28 & 21 & 0.19 & 0.05 & 4.6\times 10^{-13} \\ 29 & 35 & 0.33 & 0.03 & 4.8\times 10^{-13} \\ \hline \end{array} \] The remaining 71 centers amongst the first 100 in (Kimberling 2019) whose loci are not elliptic, still ordered by increasing fit errors, which now are several orders of magnitude higher. Notice \(X_9\) whose locus is a point has the highest of all errors.

\[ \begin{array}{|c|c|c|} \hline \text{rank} & X_i & \sum{err{}^2} \\ \hline 30 & 37 & 1.9\times 10^{-3} \\ 31 & 6 & 6.2\times 10^{-3} \\ 32 & 45 & 8.\times 10^{-3} \\ 33 & 60 & 8.3\times 10^{-3} \\ 34 & 86 & 1.3\times 10^{-2} \\ 35 & 71 & 1.6\times 10^{-2} \\ 36 & 41 & 1.8\times 10^{-2} \\ 37 & 81 & 1.8\times 10^{-2} \\ 38 & 58 & 3.3\times 10^{-2} \\ 39 & 62 & 4.\times 10^{-2} \\ 40 & 31 & 4.3\times 10^{-2} \\ 41 & 89 & 4.4\times 10^{-2} \\ 42 & 42 & 4.5\times 10^{-2} \\ 43 & 17 & 5.6\times 10^{-2} \\ 44 & 13 & 8.3\times 10^{-2} \\ 45 & 83 & 9.\times 10^{-2} \\ 46 & 48 & 1.1\times 10^{-1} \\ 47 & 32 & 1.3\times 10^{-1} \\ 48 & 61 & 1.3\times 10^{-1} \\ 49 & 82 & 1.3\times 10^{-1} \\ 50 & 43 & 1.5\times 10^{-1} \\ 51 & 51 & 1.6\times 10^{-1} \\ 52 & 85 & 1.6\times 10^{-1} \\ 53 & 19 & 1.7\times 10^{-1} \\ 54 & 27 & 1.9\times 10^{-1} \\ 55 & 69 & 1.9\times 10^{-1} \\ 56 & 47 & 2.5\times 10^{-1} \\ 57 & 39 & 2.7\times 10^{-1} \\ 58 & 38 & 2.8\times 10^{-1} \\ 59 & 16 & 3.4\times 10^{-1} \\ 60 & 52 & 5.3\times 10^{-1} \\ 61 & 28 & 5.6\times 10^{-1} \\ 62 & 25 & 7.5\times 10^{-1} \\ 63 & 99 & 8.2\times 10^{-1} \\ 64 & 14 & 8.3\times 10^{-1} \\ 65 & 98 & 8.5\times 10^{-1} \\ \hline \end{array} \]

\[ \begin{array}{|c|c|c|} \hline \text{rank} & X_i & \sum{err{}^2} \\ \hline 66 & 44 & 1.7 \\ 67 & 22 & 1.7 \\ 68 & 34 & 1.7 \\ 69 & 75 & 1.9 \\ 70 & 54 & 2.1 \\ 71 & 53 & 2.2 \\ 72 & 29 & 2.4 \\ 73 & 15 & 2.5 \\ 74 & 33 & 2.6 \\ 75 & 24 & 2.6 \\ 76 & 74 & 3.2 \\ 77 & 97 & 3.3 \\ 78 & 67 & 4. \\ 79 & 23 & 4.6 \\ 80 & 91 & 5.2 \\ 81 & 96 & 5.2 \\ 82 & 76 & 5.8 \\ 83 & 18 & 7.6 \\ 84 & 73 & 8.5 \\ 85 & 94 & 9.3 \\ 86 & 70 & 9.3 \\ 87 & 92 & 1.2\times 10^1 \\ 88 & 77 & 1.4\times 10^1 \\ 89 & 95 & 1.5\times 10^1 \\ 90 & 49 & 1.8\times 10^1 \\ 91 & 87 & 1.8\times 10^1 \\ 92 & 59 & 1.9\times 10^1 \\ 93 & 64 & 3.9\times 10^1 \\ 94 & 68 & 3.9\times 10^1 \\ 95 & 26 & 3.9\times 10^1 \\ 96 & 66 & 3.9\times 10^1 \\ 97 & 50 & 3.9\times 10^1 \\ 98 & 93 & 3.9\times 10^1 \\ 99 & 30 & 3.9\times 10^1 \\ 100 & 9 & 3.9\times 10^1 \\ \hline \end{array} \]

Contact

Any comments, ideas, corrections, suggestions, and proofs contributed are very welcome. Email me at: dreznik _theat_ gmail _thedot_ com.


References

Fierobe, Corentin. 2021. “On the Circumcenters of Triangular Orbits in Elliptic Billiard.” Journal of Dynamical and Control Systems. arxiv.org/pdf/1807.11903.pdf.
Garcia, Ronaldo. 2019. “Elliptic Billiards and Ellipses Associated to the 3-Periodic Orbits.” American Mathematical Monthly 126 (06): 491–504.
Garcia, Ronaldo, Dan Reznik, and Jair Koiller. 2020. “Loci of 3-Periodics in an Elliptic Billiard: Why so Many Ellipses?” arXiv:2001.08041. https://arxiv.org/abs/2001.08041.
Georgiev, Vladimir, and Veneta Nedyalkova. 2012. “Poncelet’s Porism and Periodic Triangles in Ellipse.” Dynamat. www.dynamat.oriw.eu/upload_pdf/20121022_153833__0.pdf.
Kimberling, C. 2019. “Encyclopedia of Triangle Centers.” 2019. https://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
Romaskevich, Olga. 2014. “On the Incenters of Triangular Orbits on Elliptic Billiards.” Enseign. Math. 60 (3-4): 247–55. https://doi.org/10.4171/LEM/60-3/4-2.
Schwartz, Richard, and Sergei Tabachnikov. 2016. “Centers of Mass of Poncelet Polygons, 200 Years After.” Math. Intelligencer 38 (2): 29–34. https://doi.org/10.1007/s00283-016-9622-9.
Tabachnikov, Sergei, and Emmanuel Tsukerman. 2014. “Circumcenter of Mass and Generalized Euler Line.” Discrete Comput. Geom. 51: 815--836. https://doi.org/10.1007/s00454-014-9597-2.